If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-180x+1800=0
a = 1; b = -180; c = +1800;
Δ = b2-4ac
Δ = -1802-4·1·1800
Δ = 25200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25200}=\sqrt{3600*7}=\sqrt{3600}*\sqrt{7}=60\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-60\sqrt{7}}{2*1}=\frac{180-60\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+60\sqrt{7}}{2*1}=\frac{180+60\sqrt{7}}{2} $
| (3/8)-2x+4=1 | | 6,4/10=1/x | | 10/6,4=1/x | | 1x+6=7x+9 | | -6t^2+120t=0 | | 4x+15=10-3x | | 16y^-3=2y^-6 | | 1.5/x=x/12 | | 10x-2=122 | | Y=3t+6/2 | | X/1.5=12/x | | 3x+5x+20=84 | | 1/3(9b+5)=-9 | | 35/3x+x=35 | | 3y+y+9,52=10,4 | | 11x-3=63 | | 3r+4=30/r | | 11x+10=65 | | 6-3x=18+2x | | 11x+4=-62 | | 5y=40y^-1/2 | | 26-6x4= | | 2x²+8x=0 | | -2x²+8x=0 | | 7x+15=7x-6 | | X(x+24)=350-10 | | 2(3n-5)=4n-1 | | t+8=7 | | 2(-3+x)=x+15 | | X+1/2x=11-1/3x | | 3b+7=11 | | -3=2*p |